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Abstract – Lack of standardization in representing 
phenotype data generated in different studies is a major 
barrier to data reuse for cross study analyses.  To address 
this issue, we developed DIVER, a tool that identifies and 
standardizes demographic variables in dbGaP, based on 
simple natural language processing and standardized 
terminology mapping. In its evaluation using variables 
(N=3,565) from a range of pulmonary studies in dbGaP, 
DIVER proved to be an effective approach to standardizing 
dbGaP variables by successfully identifying demographic 
variables with high rates of recall and precision (98% and 
94%, respectively).  In addition, DIVER correctly modeled 
79% of the identified demographic variables at the core 
semantic level. Examination of variables that DIVER could 
not handle shed light on where our tool needs enhancement 
so it can further improve its semantic modeling accuracy. 
DIVER is an important component of a system for 
phenotype discovery in dbGaP studies. 

Keywords – dbGaP; data standardization; phenotype 
variables;  data reuse 

I.  INTRODUCTION  
With the advancement of Genome Wide Association 

Studies (GWAS), abundant phenotype and genotype data 
that can be used and reused to identify genetic variants 
associated with health outcomes has become readily 
available.  The database of Genotypes and Phenotypes 
(dbGaP), for example, developed by the National Heart 
Lung Blood Institute (NHLBI), contains over 2,300 data 
sets that include more than 130,000 phenotype variables 
collected from more than 300 studies [1], [2].  In spite of 
the huge potential for leading to high impact discoveries 
in understanding health outcomes at the genomics level, 
mining such data resources is often challenging due to the 
lack of standardization in the way that phenotype data are 
represented [3]. 
 In this paper, we present the process of algorithmically 
identifying and standardizing demographic variables in 
dbGaP.  This work was done as part of the Phenotype 
Finder in Data Resource (PFINDR) program funded by 
NHLBI.  One of the main purposes of our project, 
Phenotype Discoverer (PhD) is to standardize phenotype 
variables in a way that supports an accurate and complete 
search in dbGaP [4].  
 Our initial goal was to make phenotype variables 
collected from pulmonary studies searchable. We plan to 
generalize our approach to standardizing the pulmonary 
variables in this phase to apply to the phenotype variables 
collected from other disease category studies, in 

subsequent phases. 
The purpose of this article is to report the 

development of methods and describe evaluation results 
of our tool – Demographics Identification Variable 
Extraction Resource (DIVER). DIVER was designed to 
identify four types of demographic variables (i.e., age, 
race, ethnicity, and gender) and to standardize them by 
attaching relevant metadata information. We defined 
demographic variables broadly, extending our definition 
to include any variables related to age, gender, race, and 
ethnicity. Therefore, variables related to health history or 
findings such as “age when first diagnosed with breast 
cancer” and “age stopped smoking,” were also captured 
within the scope of this work.  We targeted the 
demographic variables first, as they are relatively simple 
and less variant than other types of phenotype variables, 
but among the most frequently used by researchers [5]. 

We also report cross mapping results of the 
demographic variables identified by DIVER to those in 
another standardized phenotype variable repositories, 
consensus measures for Phenotypes and eXposures 
(PhenX) [6], [7] and Cancer Data Standards Registry and 
Repository (caDSR) [8], [9]. The purpose of this mapping 
was to assess the feasibility of integrating and improving 
the interoperability of demographic variables in dbGaP 
with those in PhenX and caDSR. 

TABLE I. DEMOGRAPHIC VARIABLES in dbGaP 

Variable ID Name Description 

phv00122459 HEAGEINF Infant age heart condition noted 
(in months) 

phv00066445 coc_dep_ons Age onset of DSM4 cocaine 
dependence 

phv00122968 AMINDIAN Race-Native American 
(0=no,1=yes) 

phv00022889 hisp Is participant Hispanic or Latino? 
 

II. BACKGROUND 

A. Challenges in Reusing dbGaP Data 
Advances in high-throughput technologies in 

genomics, imaging, and proteomics have led to an 
abundance of data. Identified as one of the top priority 
areas of research at recent NIH workshops and the “Big 
Data” announcement by several federal funding agencies, 
mining of such data is considered a critical and urgent 
research area that leads to new and better understanding of 
human diseases [10]. In order to properly mine the data, 



we need to first standardize and integrate them in a way 
that enables comprehensive and accurate search and 
retrieval.  

However, data are often collected without 
standardization, thus making it challenging to reuse them. 
For example, dbGaP provides an advanced search 
interface where users can perform focused searches by 
specifying search fields (e.g., variable name, variable 
description, document name, etc).  As illustrated in Table 
1, many variables in dbGaP are named without following a 
specific naming convention and are often labeled with 
abbreviated codes that are somewhat difficult for users to 
decipher.  Consequently, searches against variable names 
do not yield reliable results.  To resolve this querying 
obstacle, dbGaP allows users to search against full text 
resources using keywords. However, the full text search 
usually returns a large number of false positives [3], [11]. 

B. Related Studies 
 Non-standardized phenotype representation has been a 
barrier to the use and reuse of data generated and 
collected in different studies [12]. Many nationally funded 
projects have attempted to address this issue by 
cataloguing variables, in a standardized way, and 
registering them to public data repositories [5], [8], [13], 
[14]. This approach allows users generate and collect data 
using the standardized variables, while facilitating later 
data reuse without additional burden of data 
standardization.   
 In particular, PhenX aims to standardize key measures 
in GWAS and other large-scale genomic research, a goal 
closely related to our own PhD project [4], [7]. Using the 
PhenX toolkit, researchers have access to standard means 
of capturing data for well-defined and frequently used 
measures, in 21 research domains [5–7].  Efforts have 
been made to cross map phenotype variables from 16 
dbGaP studies to PhenX variables [11].  This manual 
approach produced high quality mappings, but the need 
for adopting algorithmic approaches to identify 
similarities and differences among the variables also 
became apparent [11].  
 Another standardized variable repository, the NCI 
caDSR, defines and represents the data elements used in 
cancer research based on the ISO/IEC 11179 metadata 
standards [9], [15].  Establishing cross mappings among 
different standardized data repositories is important 
because it allows researchers to conduct valuable cross 
study analyses. As such, the data elements (i.e., variables) 
in PhenX and the eMERGE (Electronic Medical Record 
and Genomics) Network have been mapped to the 
Common Data Elements (CDE) in caDSR [11], [16], [17]. 
 The eMERGE Network is a national consortium 
formed to develop, disseminate, and apply approaches to 
GWAS that use institutional EMR (Electronic Medical 
Records) as a phenotype data source [13], [18].  eMERGE 
addresses issues associated with the lack of 

standardization in EMR data across institutions by 
standardizing and harmonizing these data elements via  
metadata annotation and standardized concept mapping 
[17], [18].  To facilitate this process, eMERGE created 
eleMAP, a web environment where researchers can 
search, browse, and download harmonized phenotype 
variables along with their associated metadata [19]. 
Researchers can also harmonize their local phenotype 
data dictionaries to existing metadata and terminology 
standards such as caDSR, NCI Thesaurus (NCIT), and the 
Systematized Nomenclature of Medicine-Clinical Terms 
(SNOMED-CT) using eleMAP [19].  

C. Core Constructs of DIVER 

PhD and eMERGE take similar approaches to 
standardizing and harmonizing phenotype variables; 
standardized terminology mapping followed by metadata 
annotation. However, unlike eMERGE, where variables 
are mostly standardized and harmonized while submitted 
to eleMAP, in PFINDR, the task at hand is to standardize 
and harmonize the vast amount of phenotype variables 
already stored in dbGaP (more than 130,000).  Therefore, 
an algorithmic means of processing those variables is 
crucial to facilitating variable standardization efficiently. 

As previously described, another major challenge 
associated with standardizing the phenotype variables in 
dbGaP is that the variable names are often cryptic and do 
not convey much comprehensible meaning. Therefore, 
using MetaMap [20], DIVER processes variable 
descriptions rather than variable names,  to capture core 
concepts that sufficiently convey variable meaning and to 
subsequently map them to a standardized terminology 
system.  

 We chose to use MetaMap on the grounds that it is a 
general purpose, highly configurable, and freely available 
tool maintained by the National Library of Medicine 
(NLM) that uses sophisticated and computationally 
expensive natural language parsing methods. As described 
in [21], using MetaMap in real-time applications can be 
challenging, due to the tool’s relatively low processing 
speed compared to primarily statistically-based tools like 
MGREP . However, the coverage of MetaMap is better 
than some its statistically oriented competitors (e.g. 
MGREP) [22] Note that, for our PhD project, coverage 
and accuracy of the concept identifier used is more 
important than execution speed, since our tool standardizes 
variables once before making them available for quick 
retrieval.  

DIVER also uses simple rule-based NLP algorithms to 
formalize the semantics of phenotype variables based on 
the outputs MetaMap generates with variable descriptions.  
Many studies have shown that NLP can effectively 
determine semantic categories and relations in the 
biomedical domain [23–25].  Model systems, such as 
ontologies, lexicons, and syntactic structures, serve as 
references for formalizing the syntactic and semantic 
structures of text, and thus are crucial to these studies.  



 
FIGURE 1. eHOST WORKSPACE FOR AANNOTATIONS 

 
Likewise, the information models we developed for the 

4 types of demographic variables played a critical role in 
our formalization of phenotype variable descriptions with 
DIVER.  The process of developing the information 
models is described in the methods section. 

D. Prior Explorative Study 
In a prior explorative study, we tested the feasibility of 

identifying age variables by applying UMLS (Unified 
Medical Language System) [26] mapping and task-
specific post-processing rules to dbGaP variable 
descriptions [27]. When tested with 200 variable 
descriptions, this approach successfully identified age 
variables with a high accuracy rate.   

In this study we further enhanced the age variable 
identification function and expanded our previous 
approach to other demographic variables such as race, 
ethnicity and gender.  We built DIVER in a way such that 
it streamlines the steps involved in identifying and 
standardizing demographic variables and lends itself to be 
readily adopted by other data repositories in need of 
standardization, to facilitate data integration and sharing  

III. METHODS AND PROCEDURES 
A. Developing Information Models 

Based on the findings from the previous study [27], 
we identified an information model for age variables, 
which consists of four major information classes – theme 
(topic – i.e., age), target (or subject) of information, event 
related to the age assessment, and a linkage term that 
further specifies the time point of the event. We 
developed the models for other demographic variables 
using the age information model as a straw man model.  

To develop the information models, we first extracted 
variable descriptions of 50 age variables, 22 race 
variables, 20 gender variables, and 5 ethnicity variables 
from the data dictionaries of 5 pulmonary studies in 
dbGaP.  These variable descriptions were then processed 
with MetaMap to identify core concepts in the 
descriptions and their corresponding UMLS Concept 
Unique Identifier (CUI).  The MetaMap text output was 
then imported into a text annotation tool called eHOST 
[28]. The eHOST workspace used by the reviewers is 
presented in Figure 1. 

 



 
FIGURE 2. AGE INFORMATION MODEL  

 
Two reviewers (AH, HK) collaboratively annotated 

each variable description by assigning information classes 
to the relevant key concepts identified by MetaMap.  The 
reviewers were allowed to include new information model 
classes when necessary. The reviewers also noted whether 
MetaMap correctly mapped the key concepts assigned 
with an information class to the UMLS meta-thesaurus.  

The annotated information was then exported as an 
XML document.  The information model classes used in 
each type of demographic variable were collated and 
analyzed by the two reviewers. By establishing semantic 
relations among the information classes, four information 
models for the four demographic variables were 
constructed.  The information model for the ‘age’ variable 
is presented in Figure 2 as an example.  

B. Developing Rules for Information Model Fitting 
The same two reviewers (AH, HK) collaboratively 

analyzed the annotated MetaMap outputs to identify any 
patterns between the properties of the concepts and their 
assigned information model classes. These patterns served 
as the basis for the rules we created to (1) assign 
information classes to the concepts in the variable 
descriptions and to (2) determine if the variable 
description fell into one  of the 4 target demographic 
variables. 

For example, age-related variables can have different 
targets of information, such as study subject or family 
members of the study subject.  We noted that when the 
target of information for a particular demographic 
variable is anybody other than the study subject, 

MetaMap recognizes the subject-specific term and maps it 
to concepts whose semantic type is either “population 
group” or “family group.”  

Also, when the age variable indicates the age at a 
specific time point other than current age, a term that 
further specifies the time point co-occurs, and usually 
refers to a health condition, health behavior, or research 
activity.  These patterns were written in IF-THEN-ELSE 
format rules (see Figure 3) and tested with the 97 
demographic variables used for developing the rules.  

B. Developing a Metadata Annotation Schema 
The final outputs of the DIVER process are 

standardized demographic variables fully annotated with 
pre-defined metadata.  We developed the metadata 
schema for DIVER by benchmarking relevant metadata 
schemas of the three related initiatives that shared a 
similar purpose (i.e., eMERGE-eleMAP, caDSR, and 
PhenX) [5], [8], [19]. The DIVER metadata schema is 
presented in Figure 4 with an age variable as an example. 

 
 
 
 
 
 

FIGURE 3.  RULE EXAMPLE 

IF Theme[i] is in {Age, Gender, Race, Ethnicity}  
AND 
SemanticType[i] = “age group” OR “family group”  
THEN TOI_PCN = CandidatePreferredName[i] 

AND TOI_CUI = CandidateCUI[i] 
ELSE   //this is the default if no other TOI assigned 

TOI_PCN = “study subject”  
AND TOI_CUI = “C0681850” 



C. Implementing DIVER  
The DIVER pipeline was written in Python.  DIVER 

was implemented as a series of variable description 
processing steps.  Each step is further detailed below. 

Step 1. Variable description extraction: The data 
dictionaries in dbGaP were in XML format. For this first 
step of extracting variable descriptions and associated 
identifiers (i.e., variable id and study id), we wrote an xml 
parser and text extractor in Python. 

Step 2. Variable description preprocessing: Because 
MetaMap was unable to process certain lexical variations, 
we added a simple lexical preprocessing step to this 
DIVER process.  We identified a list of normalization 
tasks, based on findings from the annotation exercise 
previously described in section A, and wrote a Python 
script to complete each task. A few outstanding 
preprocessing tasks included removing any unnecessary 
information, such as miscellaneous punctuations (e.g., 
hyphens, underscores) and indexing related to data 
collection (e.g., Q10, EX7), and replacing certain 
shorthand expressions (e.g., mom to mother) that 
MetaMap failed to correctly recognize. This task list was 
continuously augmented throughout the evaluation phases 
as necessary whenever we encountered additional issues 
that needed to be resolved. 

Step 3. MetaMap and output parser: We incorporated 
MetaMap into the DIVER pipeline.  In this step, 
MetaMap took as an input the preprocessed variable 
descriptions and produced as an output an XML file, from 
which only relevant information, such as input text, 
mapped term, final mapping results (i.e., concept 
preferred name, CUI, and semantic type), was further 
extracted and passed to the next semantic analysis step.  
We wrote a Python script to process MetaMap outputs. 

Step 4. Semantic mapping: We next implemented a set 
of rules that evaluates whether a variable description 
processed through MetaMap fitted one of the information 
models. As previously described, this rule engine 
formalizes each variable description by assigning 
information classes (see Figure 2) to the key concepts 
identified by MetaMap. Designation of the information 
classes was determined mainly through string matching 
and evaluation of semantic types.   

The output of this semantic mapping step was an 
XML file containing variable id, variable description, 
type of demographic variable, and the UMLS CUI, as 
well as preferred concept names for each information 
class relevant to the variable. 

Step 5: Metadata annotation: The last step of the 
DIVER process was to annotate the identified 
demographic variables with the pre-defined metadata 
items (see Figure 4). Our goal is to have these metadata 
added as a part of dbGaP, against which user queries 
could be run to improve the accuracy of the retrieved 
information.  

 
FIGURE 4. DIVER METADATA SCHEMA 

 

D. Evaluating DIVER Performance  
Preliminary evaluation: We tested the DIVER pipeline 

with 2,454 variables collected from 5 pulmonary studies 
and 3 non-pulmonary studies in dbGaP.  We included 
non-pulmonary studies to ensure the generalizability of 
applying these rules to non-pulmonary studies, even 
though the rules were developed primarily based on the 
demographic variables from pulmonary studies. Our 
rationale for this was that demographic variables should 
share the same characteristics across studies with different 
disease categories. The same two reviewers (AH, HK) 
independently reviewed the output and compared results 
to ensure reliability in the evaluation process.   

The review was done at 2 levels. The first level review 
was to determine whether DIVER correctly picked up 
demographic variables and/or dropped non-demographic 
variables. The second level review was to determine if 
DIVER correctly assigned information model classes to 
the key concepts extracted from the variable descriptions 
of the demographic variables that it had identified. Four 
grading options were used: C for correct, A for added 
incorrectly (i.e., false positive), M for missed incorrectly 
(i.e., false negative), and W for when the information 
class was relevant but assigned to a wrong concept. The 
first level review was done only using C, A, and M 
grades.  

Based on this testing, the rules and the pre-processing 
functions were further expanded to incorporate more 
diverse use cases.  Also, many minor implementation 
errors were corrected.  

Final evaluation: A subject matter expert (KL) 
manually reviewed the study descriptions of the 300 
studies registered to dbGaP and identified 26 pulmonary 
studies.  Excluding 10 studies whose data dictionaries 
were unavailable at the time of this evaluation, we 
retrieved the data dictionaries of the remaining 16 studies 
and ran them through DIVER.  



The same two reviewers who performed the 
preliminary evaluation reviewed the DIVER outputs for 
the final evaluation.  The same two-level, 4-option grading 
scheme was employed.   

E. Mapping to PhenX and caDSR 
 The demographic variables identified from the 

evaluation set were mapped to PhenX using the PhenX 
tool kit [5] and to caDSR using the web-based Common 
Data Element (CDE) browser [8].  One of the authors 
(AH) manually mapped the dbGaP demographic variables 
to the PhenX measures and CDE. A matching level was 
scored using 4 grades: E for “exact” matches, B for 
“broad” matches (i.e., the mapped item has more general 
meaning than the dbGaP variable), N for “narrow” 
matches (i.e., the mapped item has more specific meaning 
than the dbGaP variable), O for “other” matches (i.e., the 
mapped item has the same theme but different qualifiers 
than the dbGaP variable).   

 
 We standardized demographic variables using 3 major 

information classes; theme, target of information, and 
event referring to the time point of assessment. Variable 
compatibility with these information classes played an 
important role in determining matching level. To first be 
considered as any type of match, two variables must have 
the same theme class.  Variables that are “exact” matches 
also share both target of information and event, in addition 
to theme.  Match designations “broad” and “narrow” 
specify that theme and target of information classes are 
comparable between the two. As an example, a dbGaP age 
variable that has a specific event modifier mapped to the 
age variable, but no event modifier in caDSR or PhenX, is 
considered a “broad” match.  Variables that do not share 
information besides theme we marked as having matching 
level “other”.  Simply having a common theme is not 
enough to justify aggregation and comparison, for cross-
study analysis, between different types of targets of 
information.  A second reviewer (HK) reviewed the 
mapping results to ensure accuracy. Any disagreements 
were resolved through open discussion.   

IV. RESULTS 
The DIVER process is summarized in the Data Flow 

Diagram (DFD) in Figure 5 with an age variable as an 
example.  The DIVER tester was implemented as a web-
based tool and is available at http://pfindr-
data.ucsd.edu/diver/.    

A. DIVER Performance 

A total of 3,569 variable descriptions were extracted 
from the 16 pulmonary studies. Frequency distributions of 
the target demographic variables as determined by the 
reviewers are presented in Table II.  About 10% of the 

total variable descriptions processed by DIVER were 
duplicates (i.e., variables that have identical variable 
descriptions).  In addition, some of the 16 studies had 
already been previously used for the development and 
preliminary evaluation.  Therefore, the frequencies were 
calculated separately, and only with the variables used in 
the final evaluation (i.e., test set), after removing 
duplicates.  

TABLE II. FREQUENCY DISTRIBUTIONS OF VARIABLE DESCRIPTIONS 

Variable Types  With Duplicates Without Duplicates 
All Test Set All Test Set 

Demographics total 282 255 253 229 
Age 228 214 217 205 
Ethnicity 4 3 3 2 
Gender 25 16 14 8 
Race 25 19 18 14 

Non-Demographics 3,283 2,781 2,933 2,482 
Total 3,565 3,036 3,186 2,711 

 
DIVER showed a high rate of precision, recall, and 

accuracy when assessed at the demographic category level. 
In this level of assessment we only evaluated whether 
DIVER correctly identified and categorized input variables 
into the 4 types of demographic variables (see Table 2). 
The proportion of duplicates was relatively small and the 
accuracy scores did not change significantly when 
calculated at the unique variable level – 99.44% for all 
variables and 99.37% for unique variables.  Therefore, we 
only present here the precision and recall scores calculated 
with the data before removing duplicates. 

 
We then assessed the DIVER performance at the 

semantic level by accounting for its ability to correctly 
identify and assign relevant information classes to the 
demographic variables (see Table 3).  The percent-correct 
scores were then calculated separately for each style of 
demographic variables.  In total, DIVER identified 79% of 
the demographic variables in the dataset correctly at the 
semantic level.  

TABLE III. DIVER PERFORMANCE 

Measurement All Test Set 

Demographics 
Category 

Level 

Accuracya  99.36% 99.34% 
Recall 98.58% 98.81% 

Precision 94.83% 94.68% 
F-Measure 0.9667 0.9670 

Semantic 
Level (percent 

correct) 

Theme/TOIb 
98.35% 97.67% 
(N=61) (N=43) 

Theme/TOIb/ 
Event 

57.14% 56.67% 
(N=35) (N=30) 

Theme/TOIb/ 
Event/Link 

76.88% 78.77% 
(N=186) (N=179) 

Combined 79.08% 79.37% 
(N=282) (N=252) 



 
FIGURE 5. DIVER DATA FLOW

 

B. Cross mapping to PhenX and caDSR  

The 253 unique demographic variable descriptions 
were standardized into 174 unique demographic variables 
and mapped to the PhenX Measures and the caDSR CDE. 
The mapping results are presented in Table 4. The 
number of variables in each demographic variable 
category included in this mapping is provided in 
parentheses.  Mapping to PhenX and to caDSR yielded 13 
(7%) and 23 (13%) exact matches, respectively.  In both 
mappings, the majority of the mappings were deemed to 
fall in “other matches.”   

TABLE IV. MAPPING RESULTS 

Matching Level / 
Target System 

Age 
(163) 

Gendr 
(1) 

Race 
(8) 

Ethnct 
(2) 

Total 
(174) 

Exact 
PhenX 9 1 1 2 13 
caDSR 17 1 3 2 23 

Broad PhenX 2 0 7 0 9 
caDSR 6 0 4 0 10 

Narrow PhenX 0 0 0 0 0 
caDSR 3 0 1 0 4 

Other PhenX 152 0 0 0 152 
caDSR 137 0 0 0 137 

 

V. DISCUSSION 

This study showed that DIVER, built with a readily 
available open source NLP tool, simple information 
models, and standardized terminology mapping, can 
identify and standardize demographic variables in dbGaP 
with a high rate of accuracy.   

Simple approaches to identifying and modeling 
demographic variables, such as keyword based string 
matching, may show reasonably good performance in 
identifying the theme concepts (i.e., Age, Race, Sex, and 
Ethnicity) and subject of information concepts, but 
struggle when handling inputs more diverse. DIVER uses 
a string matching algorithm for its preprocessing step to 
normalize frequently used lexical variants, and for its 
modeling step to identify themes.  However, correctly 
interpreting ambiguous (or polysemous) terms (e.g.,  
“White” as color vs. “White” as racial group) requires a 
more sophisticated semantic modeling step, much like the 
one that DIVER provides.  In addition, certain modifier 
concepts (i.e., “event” concepts in this study) can take on 
a wide range of diseases/conditions or behaviors. 
Utilizing semantic types is therefore a sensible approach 
to recognizing such concepts, as complete identification 
of all possible “event” concepts upfront remains a 
challenge. 



Through the DIVER process, idiosyncratic 
demographic variables are formalized based on the 
information models and their key concepts are annotated 
with UMLS CUI. The process of phenotype variable 
standardization is critical to facilitating data 
interoperability and reuse.  In the PhD system, phenotype 
variable search will be done against standardized concepts 
rather than raw strings to improve the completeness of the 
results by expanding the search terms to synonyms and 
child concepts.    

A. Failure analysis  
Analyses of the 21% tested variables that DIVER 

failed to correctly standardize revealed some errors and 
limitations in DIVER, to be addressed in future 
enhancements of this tool. We describe below the 6 
outstanding causes of failure.    

MetaMap parsing error: MetaMap struggled to 
correctly tokenize specific concepts as units in the 
descriptions. It would often split apart words of a phrase 
(e.g., “drink of alcohol” became “drink” and “alcohol”) or 
include unnecessary terms in a conceptual token (e.g., 
“infant high bp” as one unit instead of “infant” and “high 
bp” individually).  This incorrect partitioning led to 
incorrect concept mapping, which caused the rule-based 
semantic analysis step to fail.  This type of error affected 
mostly the identification of an event concept.  

MetaMap UMLS mapping failure: MetaMap failed to 
correctly map the terms from variable descriptions to 
UMLS.  Besides errors in parsing, lack of content 
coverage in UMLS contributed to the number of incorrect 
mappings (e.g., “smoking pipe” as in “age when first 
smoked pipe”).  MetaMap failed to recognize cases where 
lay terms were used to describe synonymous, known 
medical procedures (e.g., “tonsils removed” to 
tonsillectomy (C0040423), “irregular heart beat” to 
arrhythmia (C0003811)). However, there were also 
certain mapping errors not easily explained.  For example, 
MetaMap failed to correctly map “smoking cigarettes”, as 
in “age stopped smoking cigarettes”, while correctly 
mapping  “smoking cigar” (C0453996), as in “age 
stopped smoking cigar”.  

MetaMap limitations in handling negation: MetaMap 
did not recognize “other than” as a negation term, which 
led to incorrect DIVER outputs. Metamap uses an 
implementation of the NegEx negation detection 
algorithm [29]. NegEx locates "negation trigger terms" 
(i.e. terms indicating that a concept is negated) using 
simple regular expressions. The fact that the NegEx 
algorithm was originally designed for discharge 
summaries, rather than short, often ungrammatical 
variable descriptions could be a reason that it failed to 
recognize some of the negation patterns common in 
dbGaP variable descriptions. For example “age when last 
used drugs other than marijuana, cocaine, or opiates” was 
modeled to mean “age when last used marijuana, cocaine, 
or opiates”.  

Instead of using the default MetaMap implementation 
of NegEx, we could develop an independent NegEx-style 
negation module, with additional rules and trigger terms 
appropriate for dbGaP, or try a statistical NLP system for 
detecting negations based on Conditional Random Fields, 
which covers medical and genomics text [29].  We are 
also considering adding rules for identifying and 
promoting more general concepts for the terms following 
“other than” as an option.  In the above example, the 
second approach would model the input description as 
“age when last used drugs”.   

Limitations in the semantic analysis rules: The 
specification of “event” concepts focuses on diseases, 
conditions, and health behaviors.  Therefore event 
concepts like “implantation of cardiac pacemaker” that 
specify the time point of age measurement were not 
correctly modeled. We will need to include procedure 
concepts in the list of event types in future versions of the 
rule engine. Generic procedures also often specify devices 
or anatomical concepts to help clarify or convey relevant 
meaningful information.  To account for this, we will add 
rules that recognize device or anatomical site concepts as 
valid modeling components when they appear following a 
procedure concept.  

Incorporating concepts with the semantic type 
Finding: To improve the sensitivity, DIVER did not 
utilize the semantic type Finding, as it covers a wide 
range of concepts. This led to us missing a few relevant 
event terms (e.g., “baseline state” (C1290922)) and, more 
importantly, dropping key theme concepts such as “Race 
– other” (C0425379) and “death age” (C0742983).  

Resolution of some of the limitations and errors 
described here may require improving NLP algorithms 
both in and out of MetaMap, an effort by no means 
insubstantial. Therefore, we would need to assess the 
cost-benefit ratio involving this step once we examine 
also the other types of variables used to search 
phenotypes in dbGaP, and not only the demographics 
ones.  Our goal is not in formalizing variable descriptions 
with 100 % accuracy and sophistication. For example, we 
doubt modeling “age of first use of substance other than 
cocaine, marijuana, opioid” fully at the level of specific 
kind of substances negated would provide much added 
value to researchers.  A simpler version – “age of first use 
of substance” – would be enough to convey proper 
meaning to researchers. Along these lines, we are 
preparing an extensive user requirement analysis. 
Practicality issues will be discussed with dbGaP users 
during the requirement analysis. 

B. Limitations  

DIVER was designed to standardize variables solely 
based on their descriptions.  Considering permissible 
values can also provide critical information about their 
respective variables, this could potentially be a limitation 
that would need to be addressed via future enhancements. 
Upon manual review, however, we determined that the 



values usually did not alter the overall meaning of 
demographic variables we targeted, and often 
supplemented the description in elucidating variable 
meaning.  DIVER attaches value-related metadata such as 
format, allowed values, maximum and minimum, and 
value type to support cross study analyses. Making value-
related information readily available to researchers is 
important as it helps them determine whether similar 
variables from different studies are directly comparable or 
require some pre-processing, across domains.    

Our findings regarding the cross mapping of dbGaP 
demographic variables to caDSR and PhenX produced 
similar results as described in [11], [17].  We did not find 
many exact matches in both resources. We also noticed 
that certain dbGaP variables were mapped to more than 
one caDSR CDE due to the duplicates in caDSR.   

We suspect that matching levels adopted in [11], such 
as “comparable” and “related”, will be more informative 
to dbGaP users considering the target of mapping is a 
phenotype variable. However, assessing matching level 
using the grading option presented in [11] would require 
extensive review by domain experts and is planned for a 
future study.  

VI. CONCLUSION  
This study demonstrated that DIVER, a tool developed 

based on standardized terminology mapping and simple 
NLP, can successfully identify and standardize 
demographic variables in dbGaP.  The DIVER approach 
can be extended to include the other phenotype variables 
in dbGaP, processing of which would be a cumbersome 
and labor-intensive task if attempted manually. Complete 
standardization of the phenotype variables in dbGaP 
would create new opportunities for cross study analyses 
and support research initiatives in a previously uncharted 
‘sea’ of data. DIVER is the first of a series of components 
that are being developed to facilitate phenotype discovery 
in dbGaP studies. 
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